In order to donate via bank transfer, we will send our bank account details to your email. Please enter your email address here:
DEAR COPENHAGEN SUBORBITALS GUESTS, We'll get right to it: We need your help to run Copenhagen Suborbitals. This is a 100% non-profit project driven by sheer joy and hard work. We survive on donations averaging about $10, that we use to pay for raw materials, tools, our workshop, electricity and most importantly, rocket fuel. The entire CS team are unpaid volunteers, building rockets in our spare time. If this project brings you joy, please donate to keep it running. Thank you.
Rocket Engine Test Live Stream Invitation & Our FIRST Coaxial Fuel Injector!
I amongst others have posted on the site but our thoughts and questions are unanswered. If you don’t have the resources it is probably better to remove the option.
I put these thought on a few weeks ago,
Otherwise great site and I wish you well.
john ashcroft · 7th March 2021 at 6:06 pm
There maybe an easier way of pressurising the system. I don’t know if it will be lighter but should be simpler and lower cost.
You are looking at using a low performance rocket to vaporise and heat your rocket; I am going to suggest a different low performance rocket, taking a few ideas from Robert Truax
Have you considered a “hot water rocket”?
Essentially Water is superheated, probably resistively in a simple carbon steel tank. It can then be used to vaporise LOX directly, or could be used to pressurise and vaporise LN2. Pressurised LN2 could be vaporised by passing through etoh. (similar to Sea Dragon, though methane to pressurise RP-1)
Vaporized LOX or LN2 can be heated to 373K by direct injection of superheated water to the gas in the tanks. Not required for simple engine testing but should lower pressurant mass in rocket.
If you drop me an email I can run some numbers past you.
REPLY
john ashcroft · 13th March 2021 at 6:39 pm
Some numbers: To vaporise 32kg of LOX to pressurise the LOX tank would require some 11kg of superheated water at 240C, 33bar. Tank maybe 8kg.
Some could be used to vaporise/pressurise tank of LN2, you would need 25kg of LN2 in a tank maybe 17kg, to be jetted into the etoh/water tank, vaporising/pressurising.
Using superheated water to heat presurants in tanks to 373 would save some weight but would add complexity.
Comments are closed.
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.OkRead more
1 Comment
john ashcroft · 2nd April 2021 at 6:00 pm
I amongst others have posted on the site but our thoughts and questions are unanswered. If you don’t have the resources it is probably better to remove the option.
I put these thought on a few weeks ago,
Otherwise great site and I wish you well.
john ashcroft · 7th March 2021 at 6:06 pm
There maybe an easier way of pressurising the system. I don’t know if it will be lighter but should be simpler and lower cost.
You are looking at using a low performance rocket to vaporise and heat your rocket; I am going to suggest a different low performance rocket, taking a few ideas from Robert Truax
Have you considered a “hot water rocket”?
Essentially Water is superheated, probably resistively in a simple carbon steel tank. It can then be used to vaporise LOX directly, or could be used to pressurise and vaporise LN2. Pressurised LN2 could be vaporised by passing through etoh. (similar to Sea Dragon, though methane to pressurise RP-1)
Vaporized LOX or LN2 can be heated to 373K by direct injection of superheated water to the gas in the tanks. Not required for simple engine testing but should lower pressurant mass in rocket.
If you drop me an email I can run some numbers past you.
REPLY
john ashcroft · 13th March 2021 at 6:39 pm
Some numbers: To vaporise 32kg of LOX to pressurise the LOX tank would require some 11kg of superheated water at 240C, 33bar. Tank maybe 8kg.
Some could be used to vaporise/pressurise tank of LN2, you would need 25kg of LN2 in a tank maybe 17kg, to be jetted into the etoh/water tank, vaporising/pressurising.
Using superheated water to heat presurants in tanks to 373 would save some weight but would add complexity.
Comments are closed.